Cluster-Based Minority Over-Sampling for Imbalanced Datasets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Margin-Based Over-Sampling Method for Learning from Imbalanced Datasets

Learning from imbalanced datasets has drawn more and more attentions from both theoretical and practical aspects. Over-sampling is a popular and simple method for imbalanced learning. In this paper, we show that there is an inherently potential risk associated with the oversampling algorithms in terms of the large margin principle. Then we propose a new synthetic over sampling method, named Mar...

متن کامل

An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Abstract—Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalance...

متن کامل

Cluster-based under-sampling approaches for imbalanced data distributions

For classification problem, the training data will significantly influence the classification accuracy. However, the data in real-world applications often are imbalanced class distribution, that is, most of the data are in majority class and little data are in minority class. In this case, if all the data are used to be the training data, the classifier tends to predict that most of the incomin...

متن کامل

Imbalanced Datasets: from Sampling to Classifiers

Classification is one of the most fundamental tasks in the machine learning and data-mining communities. One of the most common challenges faced when trying to perform classification is the class imbalance problem. A dataset is considered imbalanced if the class of interest (positive or minority class) is relatively rare as compared to the other classes (negative or majority classes). As a resu...

متن کامل

CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification

Class imbalance classification is a challenging research problem in data mining and machine learning, as most of the real-life datasets are often imbalanced in nature. Existing learning algorithms maximise the classification accuracy by correctly classifying the majority class, but misclassify the minority class. However, the minority class instances are representing the concept with greater in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Information and Systems

سال: 2016

ISSN: 0916-8532,1745-1361

DOI: 10.1587/transinf.2016edp7130